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GEOTECHMNICAL AND ENVIROMMEMNTAL CONSHULTANTS SAINT LOUtS

May 20, 1993

City of Wrangell
P.O. Box 531
Wrangell, Alaska 99929

Attn: - Mr. Jim Pung, City Engineer .

RE: STABILITY STUDIES FOR WRANGELL UPPER AND LOWER DAMS,
WRANGELL; ALASKA ~~ "~

Gentlemen:

We are pleased to submit herewith our stability study report for Wrangell’s two water supply
dams, AK-00013 and 00014. The purpose of this study was to further explore the subsurface
conditions in and below both dams and to conduct stability studies of these dams to evaluate if they
possess adequate static and dynamic stability to meet currently accepted design standards. To conform
to US Forest Service requests and provide for efficient review, we have also attempted to discuss each
significant parameter including our interpretation of each value as well as additional concerns that were
raised during the course of our work,

In summary, we found that actual conditions within the dams do not always conform to the as-

built information. As a result, considerable matching of information labeled “existing” on prior design

documents had to be accomplished with actual conditions in order to develop reasonable sections for
stability analyses. Even then exact boundary definitions were not always possible, forcing us to make
some interpretations in order to complete the sections and perform the analysis. We learned from our
field explorations and stability studies that the dams were not as well constructed as probably they
could have been. While stable under static load conditions, they do not even closely meet current
design standards under dynamic loading and, in fact, both could fail under a future strong earthquake.
If, therefore, these dams are to continue to store water for the City’s needs, repairs appear necessary to
improve stability. The actual details and factors of safety for both dams are discussed and presented in
the pages which follow.

We appreciate the opportunity to be of service to you. Your confidence in our firm is
appreciated.

Sincerely,
SHANNON & WILSON, INC.

Fred R Brvsem.

Fred R. Brown, P.E.
Vice President
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STABILITY STUDY
UPPER AND LOWER WATER SUPPLY DAMS
WRANGELL, ALASKA

1.0 INTRODUCTION

This report presents the results of static and dynamic stability studies of the Upper and
Lower Water Supply dams in Wrangell, Alaska. The two dams, designated, Upper and Lower
Dams, are situated on U.S. Forest Service land on a single drainage way southeast of the city and
impound about 122 and 67 acre feet of water respectively. Attempts to retain water at these two
locations date back as far as about 1900 and 1935 for the Lower and Upper dams respectively,
with the construction of log crib structures. The upper log crib structure leaked badly after
construction and did not retain water until it was modified in about 1958. Since initial
construction, both dams were modified with new designs and raised by covering or partially
covering these log structures with earthfill. Records documenting these changes for both dams are
available in the form of 1965 to 1967 design sheets and “as built” drawings generally showing
what was to be done or was done. Discrepancies between the design and as-built sheets and
between as built data and newly excavated test pits in the toe area, led to further confusion and
questions as to what the dams were comprised of and the nature of the foundation support
materials. The unknowns and questions about overall stability led the City, with Forest Service
urging, to conduct explorations at both dams and evaluate the stability of these dams. This report
presents the results of these explo?ations and stability studies.

1.1 Previous Studies

Prior to the current studies, most of the information available about the dams has been
generated from the above 1960°s drawings and information compiled during our 1985 inspection
of these dams. Much of this work relied heavily on the assumption that the limited “as built”

information was correct and adequately depicted actual conditions within the dams.

In May 1992, the dams were inspected by the U.S. Forest Service as a part of their annual
inspection program. During this and subsequent inspections, water seepage was observed coming
from several feet above the toe. of the Upper Dam, triggering concerns about piping and reduced
overall dam stability. Two seepage collars with weirs were installed by the City to monitor flow.
The Forest Service also pulled old file documents from their Archives which suggested even more
discrepancies with the “as-built” documents. As the property owners, they additionally requested

SHANNON & WILSON, INC.
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that the City have an engineer perform a safety inspection of the dams which was conducted by
Shannon & Wilson in September 1992.

The current study is a follow-on study to our September safety inspection and the City’s
test pits, toe clearing, and weir installation efforts in October to address stability and toe seepage
concerns. Our inspection report, dated November 1992, followed both the inspection, test pit and
clearing efforts in order to incorporate these results into simplified stability calculations. In
addition to a number of predefined deficiencies, the City’s test pit studies revealed soft or loose
foundation sediments in the toe area of the Upper Dam to depths greater than 8 feet. Based heavily
on assumptions about the embankment materials and water levels in the dam, these studies also
revealed static factors of safety of 1.2 to 1.4, values less than the 1.5 number used to define
minimum acceptable stability for dams.

While the above inspection/simplified stability work was being completed, a second
independent study was undertaken to develop an inundation map of the downstream channel
identifying areas that would be affected should the Upper Dam fail, taking with it the Lower Dam.
This analysis is presented in our October 2, 1992, report and was performed working with the best
available topography, a 12 year old 1”=100 foot map with 5 foot contours. From this map and a
more recent check of new inhabitants in the areq, the Forest Service determined that about 13
homes fall in the inundation zone and re-classified the Upper Dam as high hazard, pending further
studies. At that time, it was acknowledged that the contour map was based on aerial photo
interpretation, may be inhccurate, and probably should be redone with a ground survey and new

inundation map.

Based on the above information, more studies were needed as it was felt that the soft or
loose materials in the toe of the Upper Dam may reflect organic stripping and that foundation
conditions below most of the dam may be much better (i.e. resting on rock or firm glacial
materials). This assumption was based heavily on nearby rock exposures in the spillway and
abutments. As there was concern that the Lower Dam may have similar unknown conditions, the

follow-on scope was conducted to address both dams.
1.2 Current Studies

The detailed scope of the current studies is defined in our proposal to the City of Wrangell
dated January 22, 1993. It involves four parts; stability studies of each dam, downstream

inundation mapping studies and miscellaneous meetings.

2 SHANNON & WILSON, INC.
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Since there were essentially no exploratory borings drilled into the dams other than the
previously identified test pits (3) in the toe of the Upper Dam, soil strengths of the various
embankment and foundation zones and water levels in the two dams have never been measured and
used to confirm the current stability of the dam. For lack of this basic data, boring explorations,
laboratory testing and water level measurements were accomplished to evaluate current conditions.
For consistency, our approach to these stability studies followed procedures normally used to
perform a Phase II study under the National Dam Safety Program, with modifications tailored to
the needs of the project.

After the field program started at the Upper Dam, it became immediately apparent that “as-
built” drawings did not match the new borehole information. Borings were having to be extended
to considerable depths below the dam bottom to reach firm support. Additionally, one of the
October 1992 test pits at the toe of the dam was depicting what was thought to be bedrock, but was
discovered with the drilling work, to be a boulder. Crib depths and conditions were also
inconsistent. Based on this initial effort, it was decided that the field work scope should be
expanded at the Upper Dam to include additional borings/probes to further identify the nature and
general density of the foundation materials in the toe area and below the dam. This follow-on
scope change was outlined in our February 18, 1993 letter and approved at Wrangell City
Council’s regular meeting on February 23, 1993. Laboratory tests were conducted on selected soil
samples and included mostly index and strength testing, These field and laboratory results are
presented in Appendices A and B respectively.

From these new data, studies were conducted to evaluate the stability of the two dams
under steady seepage and rapid drawdown conditions. Pseudo-static (simplified dynamic) stability
analyses were also performed, treating the site as being in Seismic Zone 3 according to U.S. Army
Corps of Engineer Criteria. In this analysis, a horizontal seismic coefficient of (.10 was used.
Special strength reductions to residual values were also applied to the poorer foundations soils,
recognizing that liquefaction could occur. Based on these findings, embankment stability was
checked to determine whether the dams meet minimum recommended stability standards provided
in the Corp’s guideline (U.S. Army Corps of Engineers, 1979). The end product of this study is a
final report documenting the results of our field and laboratory efforts and stability analyses.

e 3 SHANNON & WILSON, INC.
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1.3 Limitations

The analyses, conclusions and recommendations contained in this report are based on site
conditions as they presently exist and further assume that the results of the boreholes are
representative of the subsurface conditions throughout the two sites, i.e., the subsurface conditions
everywhere are not significantly different from those disclosed by the exploration. If there is a
substantial lapse of time between submission of this report and the start of repair work, it is
recommended that this report be reviewed to determine the applicability of the conclusions and

recommendations considering the changed conditions and time lapse.

Unanticipated soil conditions are commonly encountered and cannot be fully determined by
merely taking soil samples. In this instance, even with the new data, considerable interpretation
was required to complete these studies. Such unexpected conditions frequently require that
additional expenditures be made to attain a properly constructed project. Therefore, some
contingency fund is recommended to accommodate such potential extra costs.

2.0 SITE DESCRIPTION

The Wrangell Upper and Lower Dam System.consists of two earthfill dams and reservoirs
which provide for the main water supply to the City of Wrangell. The two dams are located on
Wrangell Island near the City of Wrangell. As shown in Figure 1, the dams and reservoirs are
both on Mill Creek about 1500 feet apart and are situated in a narrow drainage-way about 1/2 to 1
mile southeast of the City. Most of the surface water in the watershed drains down steep rock
slopes to the southeast and the reservoirs. The dams are owned by the City of Wrangell with the
land being under long term lease from the USDA Forest Service.

The two dams are both approximately 28 feet high, 315 to 320 feet long earth structures
located on the same stream. The elevation difference between the two dams is 64 feet. The upper
dam has a 25 to 33 foot wide crest, coarse granular slopes on both the up and downstream sides,
and retains water via an internal crib core which prior to 1958 was it’s own water retention
structure, but leaked excessively and held little or no water. Available records suggest that in about
1958 it was covered with fill on both the up and downstream slopes to support water and then
raised again in about 1967 with additional fill to create it’s current shape. The approximate current
shape of the dam is shown in Figure 2. '

4 | SHANNON & WILSON, INC.



A-494

The lower dam, shown in Figure 3, has a much smaller 12 foot crest width with similar
embankment slopes to the upper dam and an internal central sheet and treated timber core. A log
crib dam once retained water at this site only the current dam was installed just upstream of the crib
dam to retain a higher reservoir level. The remains of this log dam, shown in Figure 3, are visible

in the downstream toe of the current dam.

The Upper and Lower Reservoirs supported by these dams are shown in Figure 1 and have
a normal storage capacity of 122 and 67.5 Acre Feet (AF) respectively. The maximum storage
capacities are 190 and 102 AF. For these capacities and heights, both dams are classified by the
State of Alaska as small, the minimum defined size category. Using USDA Forest Service criteria,
the size classification for both dams would be a C based on the above height and impoundment
capacities, or a B if an exception to spillway design capacities is not obtained from the Regional
Director of Engineering.

The two dams and reservoirs on Mill Creek form the water supply for the City of Wrangell.
Water is taken to the treatment plant from the smaller Lower Dam reservoir via a pipeline. This
reservoir is maintained full by manually adding water from the larger Upper Dam reservoir, when
necessary. In the event of a failure of the Upper Dam, the Lower dam would be overtopped,
washed out locally and possibly drained. An October 1992 inundation map prepared for rapid
drainage of these dams indicated that the treatment plant would be approached but not flooded.
Follow-on studies of the map with current conditions indicated that about a dozen homes fell in the
inundation zone. The loss of storage water would also impact major industry and to a lesser
extent, the community’s water supply system and fire fighting capabilities. Based on this
information and pending receipt of more accurate survey data and a better inundation map, the
Forest Service determined that this dam should be considered high hazard. Based on the above
map, the hazard classification of the Lower Dam would be Class 3 (low) as it’s failure would not
cause loss of the complete water supply system namely the Upper Dam and water supply. Sudden
release of this Jower and smaller (67.5 AF) reservoir by itself would also keep the inundation area
within its main drainage channel where it would not likely impact downstream homes. With a
general lack of confidence in the old survey map, it was felt that with new survey data, the above
conclusions and the hazard classification of both dams should be confirmed as a part of follow-on
studies.

S SHANNON & WILSON, INC.
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3.0 FIELD EXPLORATIONS AND LABOQRATORY TESTING

Nine borings and five probes were advanced at the two dam sites to evaluate the subsurface
conditions. Of these holes, all but three were drilled at the Upper Dam. The borings were
designated B-1 through 9, while the five probe holes were labeled B-A, C, D, E and G. These
borings and probes were advanced and sampled with a track-mounted Mobile B-47 drilling rig and
extended to depths ranging between 24 and 77 feet. The locations of these borings and probes are
shown on Figures 2 and 3.

The individual logs of the borings are presented in Appendix A. Also presented in
Appendix A is a detailed description of the drilling and sampling procedures and the installation
methods for the piezometers installed in each of the nine borings. Results of the groundwater
readings, taken by our firm during and after drilling and by City personnel on April 27, 1993,
about 70 days after drilling, are summarized on the logs and in Table 1.

As discrepancies were noted in much of our exploratory work, it was felt that survey
support of key surface features was necessary including the elevations and locations of our borings
and probes as well as current up and downstream slope profiles for both dams. In addition to the
boring locations, longitudinal sections A-A and B-B were developed for each dam, Figures 4 and
5, three profiles were developed for the Upper Dam, Figures 6, 7 and 8, and one was developed
for the Lower Dam, Figure 9. The locations of these profiles are shown in plan in Figures 2 and
3. This survey was conducted by City staff and furnished to us for our studies.

Laboratory tests were performed on representative soil samples from the borings to confirm
the field classifications and to evaluate the engineering properties of the subsurface materials.
Emphasis of the program was directed toward evaluating the index and strength characteristics of
the embankment and foundation materials for stability analyses. The laboratory results are
presented in Appendix B.

4.0 SUBSURFACE CONDITIONS

4.1 Foundation Materials

The geology of this area is generally covered in our 1986 initial safety inspection report for
these dams. This northeast trending valley is thought to have been carved or modified by glacial

6 SHANNON & WILSON, INC.
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ice that advanced over the area at least once and probably several times during the Pleistocene
Epoch. Bedrock exposed in the steep slopes and the spillway sidewalks consist of metamorphic
rock including graywackes, schists, phyllites and slates that have been intruded by igneous rock.
The steep rock slopes in the left abutment are covered with a thin veneer of surface organics, while
the right abutment rock appears to be covered with a thin layer of glacial sediments, probably a
glacial till consisting of equal parts sand, silt, and gravels. Based on surface exposures and the
boring data, the general slope or dip in the rock surface across the valley is depicted in Figures 4
and 5. The two Figure 4 profiles are a projection of boring data at the Upper Dam, the upper
profile reflecting natural vertical and horizontal scales. The lower plot in Figure 4 has an
exaggerated scale to depict the details of the foundation soils in the valley. While bedrock was not
reached in many borings, a projection of the rock surface in Figure 4 suggests that the original
sediments that infilled the steep sided valley following glacial carving may approach 60 feet in the
bottom.

The boring data indicates that these valley floor materials are a mixture of sands, silts and
gravels and likely represent a mixture of slide debris and alluvial materials deposited as stream
sediments over time. The more gravelly foundation samples in Appendix B likely depict slope
debris while the sand and silt dominant soils with little gravels are probably alluvial in origin.
Based on these gradation curves, the fines content in the foundation soils rangcs from 10 to 60
percent, although in most instances it is more commonly in the 15 to 35 percent range. The mixing
of the foundation materials is evident in part due to presence of organics scattered randomly within
the foundation materials. Based on the results in Appendix B, Table B-1, the organics typically
vary from 2 to 8 percent, but in many cases are not present. In one instance, Boring B-5
encountered silty, fibrous organics at a depth of 70 feet. The measured organic content was 64
percent.

The penetration resistance data taken during sampling in the borings show uncorrected
values between 2 and 24 blows per foot with an average value of about 10 of 11 blows per foot.
This generally corresponds to a loose to medium dense unconsolidated foundation material. The
inability to perform plastic limit measurements on most of the soils indicates that even with a high
fines content the foundation soils possess only a small amount of cohesion. For analysis purposes

they are therefore are treated as cohesionless ¢ = () materials.

As depicted in a section across the centerline of the Lower Dam (Figure 5), similar deep
sediments also lie below in this part of the valley. The bedrock is exposed in the spillway and right
abutment. Based on “as built” drawings, this rock is shallow below the right half of the dam and

7 SHANNON & WILSON, INC.
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in the right abutment area, but then plunges near the center of the dam. None of our borings at the ‘

Lower Dam reached bedrock. The borings that extended into these foundation materials disclosed
that these sediments are similar in gradation and density properties to those below the Upper Dam.

4.2 Embankment Material:

The embankment conditions encountered in the borings and probes are depicted generally
in three subsurface profiles, Profiles 1, 2 and 3, for the Upper Dam, and one profile (Profile 4) for
the Lower Dam, Figures 6 through 9. The locations of these profiles are shown in Figures 2 and

3. Detailed conditions are also shown on the boring logs, Appendix A.
Crib Material

In general, three basic embankment materials were encountered, 1) a wood/soil crib, 2) a
silt over the Upper Dam, and 3) the upstream and downstream embankment shell coverings.
Because of the general discrepancies between as-built, design, and actual conditions; considerable
difficulty was encountered in developing the three Upper Dam profiles and distinguishing the size,
depth and locations of the internal elements in the dam. Our approach therefore started by
extrapolating pertinent information from old plan sheets, which depicted existing conditions
focusing on the location and elevation of the crib structure. It was felt that “existing” information
on the older sheets should be reasonably correct as the documents provided for changes to real
conditions, whether the proposed changes were or were not actually constructed. This information
was placed on the valley sections (Figures 4 & 5) along with the new borehole data for
comparisons. The drawings for the Upper Dam showed that the crib was initially about 164 feet
long, 5 feet high, rectangular shaped, and extended below the original groundline an unknown
amount. The borings revealed that the crib was about 15 to 18 feet in vertical dimension, meaning
it initially was buried 10 to 13 feet below the original groundline. This data also indicated that the
crib is now five to seven feet lower than the old crest of the crib, meaning that considerable
settlement of the crib likely occurred under the added weight of 23 feet of fill placed on top of the
crib during 1968 raising efforts. The data also suggests that the crib members are not continuous
as the crib was likely cut in the middle area to upgrade the water supply/drawdown piping through
the dam.

In general, our borings at the Upper Dam encountered solid wood within the crib, although
the Forest Service archives data indicates exterior deterioration and rotting of the outer members.

8 SHANNON & WILSON, INC.



A-494

From this, we conclude that the integrity of the exposed outer logs in the upper five feet of the
Upper Dam may be questionable.

Much of the crib in the Lower Dam is exposed and can be seen in photographs taken during
earlier safety inspections. The face of wood is badly rotted, and is likely near failure where local
downslope slumping of the crib materials is possible. The center area of the crib structure is
missing, meaning it was breached with the raising effort

Both cribs for the two dams are filled with earth of similar density and composition. Our
borings reveal that the Upper Dam'’s crib soils are classified as silty gravelly sands and silty, sandy
gravels, while the Lower Dam materials are slightly siltier. Of the ten penetration resistance tests in
the Upper Crib zone, two are high (45 and 50 blows/foot) while eight are low (less than 15
blows/foot). Discounting the two high values as being on rock materials or logs, the average
uncorrected penetration resistance of the remaining eight tests is 10 blows per foot or borderline
between loose and medium dense. This is depicted in Figure 10. In the Lower Dam, six
penetration tests within the crib depicted values between 4 and 18 blows per foot with an average
of 11 blows per foot.

In developing the average shape of the crib in the Upper Dam, it is known that the log crib
was rectangular and buried roughly 10 to 13 feet below the groundline. To bury the crib therefore
means an open excavation had to be constructed with backfill placed around the outside of the
excavation to restore the groundline to it’s original grade. Since no borings were drilled in this
area, we have therefore assumed conservatively that the backfill was in a limited work space and
therefore compacted to the same low density as the crib materials. This is reflected as wedges on
either side of the crib in the profiles, Figs. 6, 7 and 8. The use of these low densities in this area is
justified based on Old Forest Service archives for this dam which indicates re-use of excavated

materials was permitted.

As there is no evidence that the crib extended below the groundline in the Lower Dam
(Figure 9), this wedge was not added to Section 4.

Concern was expressed that the logs in the Upper Dam may have buoyancy and their
lighter weight than soil may produce reduced lower stability than analysis would suggest. For
analysis, buoyancy was ignored as a reasonable assumption, as the logs have been submerged or
partially saturated under the same environment for at least 25 years. Conditions have therefore

probably stabilized in this period where buoyancy should, under a worst case scenario, be very
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small. For weight considerations, the wood was assumed to represent 25 percent of the crib
section shown in the profiles, with a density of 70 pcf. For analysis purposes, this would make
the average wet unit weight of crib area in the profiles about 114 pcf.

Silt

Directly on top of the wood crib, a low plasticity silt unit was encountered in all three
borings drilled in Section 1 of the Upper Dam (Figure 6). This silt was locally gravelly and sandy
and three penetration tests produced an average driving resistance of 7 blows per foot. This
corresponds to a medium stiff cohesive material or a loose granular soil. For purposes of analysis,
this material is treated as a cohesionless (¢ = 0) material or the more conservative of the two
possible assumptions. The top of this unit is thought to represent the sloping and flat top zone of
material depicted on the as built documents. The documents su ggest that this silt was likely placed
here as an extension of the impervious core as part of early (pre 1967) attempts to seal the leaking
Upper Dam and raise the water level. These documents also suggest that sloping fills were placed
on each side of the crib and at the higher elevations to form what is referred to as the top of old
dam in Figure 4. The survey information and current observations suggest that this dam was later
covered with another granular shell to create the current slopes in Figures 6, 7 and 8.

The silt cap was not present on top of the crib at the Lower Dam. In addition to this crib,
the lower dam is reported to have a sheet pile (partial wood and partial steel) cut off wall to control
seepage through the dam. Its exact location could not be determined from our explorations,
however, this is not considered critical to the stability. For the purpose of the stability analysis, the
strength influence of the wall was ignored as it was judged to be small. It’s lateral position is also
within the center crest area where si gnificant material changes on either side of the cutoff will not,
in our opinion, greatly alter the calculated factor of safety for either the up or downstream slopes.
The water level readings in Boring B-8 and 9 should provide adequate information for evaluating

it’s current effectiveness at maintaining low hydrostatic forces in the downstream embankment.

Quter Embankment

Both dams possess similar outer granular shells consisting of till-like materials of about
equal parts of silts, sands and gravels. They therefore are not rockfill dams, as originally
suspected, but rather earthfill dams with central cores for water control. The grain size results in
Appendix B indicate that the embankment shell materials are only slightly less silty than the crib
soils. The penetration resistance values show that these embankment soils are consistently much

10 SHANNON & WILSON, INC.
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denser. Twelve penetration resistance values for the Upper Dam range from a low of 14 to a high
of 77 with an average uncorrected value of 43 blows per foot. These values and Figure 10 suggest
a moderate compactive effort and a generally dense consistency. Based on the compaction test in
Appendix B, Figure B-9, the shell material for the Upper Dam has a maximum dry density of
about 127 pounds per square foot and an optimum water content of 9.4 percent. The natural water
contents in Table B-1 also reflect that most of the materials in the Upper Dam embankment are wet
of optimum meaning, if excavated, they will be difficult to replace in a compact state.

The granular materials at the Lower Dam have similar gradation and compaction properties
to the Upper Dam only they are less dense and therefore have slightly lower in place wet unit
weights and higher water contents. Based on limited boring data, the section in Figure 9 reflects
three basic shell units differentiated largely by density. The upstream shallow and deep
embankment materials have average uncorrected penetration resistance values of 17 and 9
blows/foot respectively. The lower upstream zone also contains less gravel and is mostly a silty
sand. The downstream embankment is more compact with average uncorrected penetration values
of 34 blows per foot.

The sheet pile wall in the Lower Dam presumably falls between borings B-7 and B-8 in
Figure 9. It’s integrity cannot be evaluated by boring explorations nor was it considered necessary
as it’s effectiveness al scaling off water should be reflected in the piezometers and signs of toe
seepage. In both instances, low water levels in the dam and no apparent seepage suggest that
hydrostatic pressures are not large in this dam. The sheet piles structural integrity was ignored in
the follow-on stability analysis.

4.3 Yoids/Piping

During the drilling operations, concern was expressed that voids or extremely soft materials
may exist below the crib structures of the Upper Dam and may have led to piping out at the toe of
the dam from the toe seepage that is occurring. Concern was also expressed that the materials may
be so poor that after drilling and prior to sampling the auger may have settled through any soft
material meaning that only the better quality, not the poorer materials, were sampled. In our
opinion, voids were not encountered during drilling and the low blow counts that were recorded
(as low as 2 blows per foot) are a reflection that loose materials are present and were not missed.
Also with these loose materials being accounted for, it is likely that any voids that are present
below the logs are small (i.e. the low angle of repose of the loose saturated materials would have
filled most voids, limiting their size).

11 SHANNON & WILSON, INC.
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Referring to Figure 6, it is our opinion that the risk of piping of loose crib materials from

the Upper Dam is low for the following reasons.

6.

The gravelly silty sands in the foundation are too well graded and while loose have

too many fines for migration below the dam. -

The dam is not a rockfill dam, but rather an embankment dam with 60 to 70 percent
sand and silt size particles with little or no apparent cohesion. The void space or
porosity of this material is small or low compared to a rockfill material, providing
limited paths for piping. As long as the flow or seepage through these materials is
not large, excessive internal piping cannot occur. Before internal piping can occur,
the fines at the toe would have to be washed out first causing signs of ground

subsidence in this region as an early warning sign.

With the crib structure and soil materials set well into the foundation materials
(Figure 6), piping of the lower two-thirds of crib materials up to the original ground
level and through a pervious zone of embankment is unlikely. Based on the low
water levels in the foundation area, the hydraulic gradient in the zone of piping
(from the crib to the toe) is very low and not conducive to extensive piping.

Voids, sink holes, crest subsidence or silt deposition in the toe were not observed

on the crest surface, the slopes, or in the borings that would imply internal piping.

The flow over the weir (7 gpm) while indicative of only partial seepage is clear

water and does not appear to be transporting fines.

The one void noted in one of the City’s test pits at the toe of the Upper Dam is
likely the result of a decaying log at this location, according to Jim Pung,City
Engineer. Also, if piping was occurring in the denser shell materials at the toe of
the dam, piping within the dam and the loose inner crib materials would likely be
widespread and would have shown some signs of distress by now in the form of
crest subsidence or sinkholes.

12 SHANNON & WILSON, INC.
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4.4 Groundwater

Groundwater conditions at the two dams were determined by measuring the water level in
new piezometers installed in each of the nine borings after the drilling work was completed.
Piezometers were not installed in the probes, as most of these holes were drilled in the toe area of
the Upper Dam in a low lying area of the drainage-way where the water level was known to be at
or near the ground surface. To aid in evaluating these results, water level measurements were also
noted in the field during drilling. The water level taken both during drilling in the borings and later
in the piezometers are tabulated in Table 1 and summarized in the profiles, Figures 6 through 9. In
a few instances, water data is not shown and was not taken during drilling because of the drilling
method. Once water is introduced as part of the drilling operation, these measurements can no
longer be taken until after the piezometers have been installed and water levels have stabilized.

During drilling, one boring in the Upper Dam experienced excess hydrostatic pressures
(about a 6 foot head above the reservoir level) which resulted in water surge flow out the top of the
augers as the hole extended from a depth of 5 to 11 feet. This boring (B-1) is located about 7 feet
horizontal distance from the reservoir near the upstream crest edge of the dam. Since this boring is
positioned on the crest and is surrounded by the reservoir on the upstream side, the downstream
dam face and no water on the opposite side, and the spillway on a third side, this pressure under
natural conditions can only be charged by water flow from the left abutment 300 feet across the 35
foot crest to this area. Since these levels are not reflected in the 3 crest borings (B-4, 5 and 6)
spaced between this boring and the left abutment, we conclude that this flow is likely not a
reflection of real conditions that would affect stability, but induced pressures by drilling
operations.

Locally during drilling, water levels higher than depicted in the piezometers after drilling
were recorded in the downstream area of the Upper Dam, namely B-2. This suggests that water
may be perched locally on impervious zones within the fill and may now be draining into the
borehole and out the hole at a lower elevation where more pervious and better draining materials
exist. This condition is not judged to be adverse to the overall performance of the dam as it
indicates that 1) the pore pressure in the deeper weaker materials (the crib and foundation) are low
and 2) there are pervious layers in the downstream embankment providing for relief and drainage
of any excess pressures before they can develop. The hydrostatic pressures due to these perched
conditions while they may reduce local stability are not considered significant to mass instability as

they must be very low or a reflection of water ponded zones. If they were more significant and
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charged by seepage through the dam they would be evidenced as springs on the embankment
slope. With the exception of the one seep at the toe, no obvious springs or wet zones are
evidenced on the embankment slope of the Upper Dam.

5.0 STABILITY STUDIES

5.1 Approach to_Analyses

Stability analyses were performed on each of the four sections of the dam embankments in
Figures 6 through 9 using the strength and unit weight properties in Table 2 and both circular arc
and random irregular failure surfaces. Both up and downstream slopes were studied in each
section using the 2 dimensional limit equilibrium slope stability program, PCSTABLSM. This
program was developed at Purdue University and has been upgraded over at least 13 years to
handle general slope stability problems by the Simplified Janbu, Simplified Bishop, and Spencer
method of slices with varying options to pick the type of failure surface as well as other features or
corrections to improve the calculated results.

Both upstream and downstream slopes were first studied under steady seepage static
loading conditions to determine 1) the location of the critical failure surface or arcs and the factor of
safety that would lead to a breach of the dam. In many instances, the failure area was expanded to
allow shallow failure on the embankment slopes to have a minimum calculated factor of safety to
compare with the value that would result in breaching of the dam. This information provides
insight into the mode of failure. This effort was followed by an analysis of the upstream
embankment section under sudden (or rapid) drawdown conditions. Finally, the most critical
embankment section (both up and downstream) in both dams were evaluated using pseudo-static
methods to determine the change in factor of safety due to simulated earthquake loading conditions.
Because liquefaction was likely in some materials under strong shaking, strength reductions to
undrained residual values had to be accommodated in the analysis to simulate this condition where
appropriate. The factors of safety determined under each load condition where breaching of the
dam would result were then compared with that recommended by the Corps of Engineers (Table 3)
to determine if they exceeded the suggested values. As a part of the National Dam Safety Program,
it was considered desirable to have a minimum factor of safety of 1.5 for steady seepage conditions
under the maximum normal pool, 1.2 for sudden drawdown conditions and 1.0 for earthquake.
For the sudden drawdown study, full slope drawdown is assumed to occur so rapidly that drainage
or reduction in pore pressure cannot occur.

14 SHANNON & WILSON, INC.
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Under steady seepage conditions, the reservoir level was placed at Elevation 360 feet for
the Upper Dam and 295.5 feet for the Lower Dam (the maximum normal pool elevation). This
condition is close to the maximum level that develops under normal loading conditions and
assumes that the spillway is overflowing about 1.5 feet above the normal levels of Elevation 358.5
and 294 feet respectively. This condition closely follows the criteria suggested by the Corps of
Engineers in Table 3 (Case III). The actual phreatic surface used in our analyses is shown in the
profiles (Fig. 6 through 9) relative to the water level measurements in the piezometers.

Under sudden drawdown conditions, the reservoir level is assumed to drop instantly from
the maximum normal pool elevation to the lowest feasible level with the water surface in the
drawdown area being placed at the upstream embankment surface. Our stability of the upstream
embankment was based on dropping the reservoir at the Upper and Lower Dams from the
maximum normal pool to the bottom of the reservoirs. In reality, the chances of this occurring are
small, as the drawdown values and piping are too small to allow it to happen this rapidly.

Under earthquake loading conditions, the same conditions used for steady seepage loadings
apply with adjustments in strength to accommodate strength loss due to local liquefaction. This
reduction is discussed in the next section. In addition, a suitable horizontal seismic coefficient is
added to the driving forces on each slice analyzed. In previous studies, this site was judged to be
in Seismic Zone 2 and the dams were evaluated using the Corps recommended 0.05 g coefficient.
We understand that the Corps has recently revised their seismic map placing Wrangell on the
boarder line between Seismic Zone 2 and 3. From Forest Service review comments, the higher

more conservative Zone 3 seismic coefficient (0.1 g) were used in this analysis.

5.2 Analyses Procedures

To evaluate the stability of the two dams, two basic programs were used from the
previously referenced computer program; the simplified Bishop method applicable to circular
shaped failure surfaces and the simplified Janbu method applicable to failure surfaces of irregular
random shapes. Both analyses calculate the factor of safety of a slope by the method of slices. In
a calculation, a failure surface is determined starting on the ground surface at the toe of the slope
and generating trial failure surfaces composed of a series of straight line segments of equal length
that extend through or up the slope to the crest. In most cases, a 10 foot line segment was
specified for this project to form the chord of a circular arc or a random surface. The search is
controlled only by specifying the horizontal width of the search area at the toe and crest of the
slope. In the case of these dams, deep seated sliding and breaching of the dam was controlled by
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specifying that the failure plane occur below the entire crest width of the slope or further upslope if
calculations so indicated. To seek the minimum value or a shallow sliding condition, this width
limit was generally specified near the top of the down slope crest, allowing the search routine

wider boundaries.

Through repetitive iterations over 100 random or circular surfaces are studied, accumulated
and sorted by values of their factors of safety. The ten most critical (lowest) surfaces are then
plotted and numbered so that the pattern may be evaluated visually on the profile being studied and
modified and re-run if necessary. Examples of these plots are presented as Figures 11 and 12 for
random and circular failure surfaces respectively. Both circular and random irregular surfaces -

were studied for each section to be sure that the lower values were being calculated.

A single phreatic surface, comprising a line 1.5 feet above the reservoir level and the
piezometer readings was used in the analyses to approximate hydrostatic conditions in the dams.
In Janbu’s random search program, the new perpendicular method was used to approximate the
pore pressure, reducing the conservatism in the analysis where the pore pressure is normally taken
as the vertical distance from the base of the slide to the phreatic surface immediately above. The
new method approximates the equipotential line as a straight line from the base of the slide
perpendicular to the line through the piezometer surface bounding the top of that slice.

It was originally intended to take relatively undisturbed samples of the soils for triaxial
testing for comparison with the penetration resistance values for developing soil strength
parameters. Unfortunately, the materials both in the dam and foundations were gravelly, greatly
limiting the ability to recover these samples. Of the two samples attempted, both were of poor
quality. It was therefore decided to recompact disturbed samples and test them for strength at their
natural moisture contents. The lack of material often required preparing composites of several
consecutive samples from a boring to have enough material for testing. Because the materials were
largely granular with little cohesion, consolidated undrained triaxial tests were performed with pore
pressure measurements in order to define effective and total stress envelopes and identify for
analysis the shear strength parameters specified in Table 3 (the average between total and effective
stresses). While the triaxial results in Appendix B confirmed that the material possesses little
cohesion; the high gravel content in the composited samples, the presence of local organics and the
inability to reproduce realistic densities led to strength results which in most cases were greatly in
excess of the values that would be indicated by the penetration tests. This problem was particularly
evident when the same composited sample (B-C, S-2 to 4) was prepared twice and produced
widely varying results. Confidence in the triaxial results was therefore low and on the
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unconservative side, making the penetration test results the best information for assessing strength

for our analysis.

The strength values were therefore determined by selectively deleting unusually high
penetration values (N values) in each major unit and averaging the remaining values. These
average N values were converted to angles of internal friction, ¢, under undrained conditions by
empirical relationships established by Peck, Hanson & Thornburn in their text book titled

- Foundation Engineering. This relationship is included as Figure 10. The N values were
uncorrected for overburden efforts to offset the use of the slightly larger (2.5 inch OD) sampler
over the more standard (2 in. OD) size. All strength values in Table 2 therefore are based on no
apparent cohesion, the above ¢ (Fig. 10) relationship and undrained conditions with one exception.
This one special condition is discussed below and was applied where the N value in the foundation
material is less than 10 blows per foot and the slope is being evaluated under earthquake loading
conditions.

The dynamic stability of the embankment and foundation soils was evaluated using a
pseudostatic method of analysis applied to the critical arcs or failure surfaces determined from
steady seepage loading conditions. As implied in the name, pseudo-static analyses are an
extension of the conventional static method of analysis and is provided for in the above computer
program. The earthquake force is included in the analysis as an equivalent static lateral force
applied to all the elements in the shear slice. The magnitude of the force is defined by a seismic
coefficient expressed as a fraction of gravity, multiplied by the weight of the slice. The pseudo-
static analysis provides the factor of safety for the failure surface for a given seismic coefficient.

A seismic coefficient of 0.10 g was used in the analyses to represent the lateral earthquake
forces. As indicated previously, this coefficient corresponds to that recommended by the Army
Corps of Engineers for analyses of dams in Seismic Zone 3.

Pseudo-static analyses are appropriate to evaluate the seismic stability of slopes provided
that the soils do not liquefy or experience a major loss of strength during the earthquake. The outer
embankment materials of the Upper Dam and the downstream section of the Lower Dam are
generally considered to be dense where pore pressure build up and liquefaction is not considered
possible even under the most severe earthquake shaking. Granular materials such as 1) in the
cribs, 2) in the lower upstream area of the Lower Dam and 3) particularly in the foundation soils

below and on either side of both dams are much less dense with low blow counts where they may
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be susceptible to these conditions in the event of a design earthquake typical of those experienced

in a Seismic Zone 3 region.

The empirical procedures of Seed (Seed, 1979 and SW-AA 1976) were used to account for
the liquefaction potential of these marginal materials in our analyses. In Seed’s procedure,
liquefaction potential is evaluated using Standard Penetration Resistance N-values taken from the
borings. The first step in the analysis involves the differentiation between nonliquefiable and
potentially liquefiable materials. The loose materials identified above are considered potentially in
this category. The next step is to correct the N values for overburden effects and then compare
them and cyclic stress ratios that would be anticipated for Seismic Zone 3 with published field case
histories and large scale laboratory tests where liquefaction has both occurred and not occurred.
This data is summarized in Figure 13. Based on this comparison, granular soils in Seismic Zone 3
would likely liquefy if the average corrected N value were 10 blows per foot or less. Using this
value (10) as a threshold value, procedures recommended by Seed and Harder (1990) were used to
determine the amount of strength loss that should be applied to these zones. The next step involves
correcting the N values for overburden and correcting the N value a second time for the amount of
fines. In our study, our N values were in fact corrected a third time to account for the larger
sampler used in the field study (2.5 OD vs. 2”7 OD). In this correction, the N value was reduced
an additional 20 percent for the larger sampler. If the final N value is equal to or less than 10
blows per foot, it should be assumed for analysis that the soils at that point would liquefy and drop
to residual undrained strengths which for the corrected N value of less than 10 blows can be taken
as 200 psf (¢ = 0, ¢ = 200 psf). The published relationship upon which this value is based is
shown in Figure 14. From these results, and based on the geology or our knowledge of general
construction procedures, areas where liquefaction can be expected can be identified on the profiles

for use in the analysis.

For purposes of analysis, it was assumed for both dams that the crib soil materials may
liquefy and lose some strength, however, the crib’s wood framing in all likelihood would hold it
together and remain intact for several reasons. Logs are extensive in the crib zone based on the
drilling, and substantial area wide strength losses would need to occur along the dam axis before
enough volume change can take place and cause the entire crib to distort excessively. Further, the
crib on the Upper Dam in Figure 6 is deeply embedded entirely within dense embankment fill on
the top part and seated well into the relatively low permeability foundation soils where it would be
difficult for a liquid material within the crib to reach the slope face where it can flow out. In the

Lower Dam, the crib is close to the face of the slope, however, liquefaction is only common in
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saturated materials (i.e. below the water table). Based on Figure 9 the water level encompasses

only the lower third of the crib structure and is in an area where the N-values are somewhat higher.

A second area identified where liquefaction may occur is the upstream fill of the Lower
Dam, Figure 9. Only one data point fell into this range, suggesting local loose pockets, however,
the overall database in this region is weak. For lack of more definitive information and the fact that
the hazard rating is thought to be low for this dam, we have assumed that it would not liquefy.

Substantial areas of the foundation materials were found to be potentially liquefiable below
both dams and in the downstream areas immediately below the dams. By compositing all N-values
for each dam and plotting the results with elevation on the more critical slopes (Figures 6 and 9) it
appears that the shallow soils in the upper 15 to 20 feet in the valley area were liquefiable
diminishing to 5 feet or less deep below the dam. This boundary is represented by the bold dashed
line in Figures 6 and 9. Above this line, it was assumed in the analysis that liquefaction would
occur and shear strengths in this area would drop to a residual value (200 psf). Below or outside
this boundary, the foundation soils would not liquefy and the static strength would remain
unchanged.

5.3 Analyses Results

The results of our stability analyses are tabulated in Table 4 for varying load conditions, for
both circular arc and irregular (non circular) failure surfaces and for both shallow failures that
would not breach the dam and deeper failure surfaces that would. From the Table 4 results, a
number of trends are evident:

1.~ Analyses using irregular random failure surfaces produce factors of safety in this case
which were consistently below those analyses assuming circular arc failure surfaces.

2. Analyses where shallow failure surfaces were permitted always resulted in lower factors of
safety than deep seated failure and breaching of the dams. This is because the materials are
largely granular (¢ materials) where the shear strength is, by definition, lower where the
normal forces or overburden pressures are low. This means that the mode of failure would
be shallow initially and progress deeper.

3. With the exception of the smaller Section 3 at the Upper Dam, the factors of safety for the

downstream slopes are lower than those for the upstream slopes.
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4, Under steady seepage, the factors of safety against breaching of the Upper Dam (deep
seated sliding) on both up and downstream faces are above 1.5 for all sections or above the
minimum value recommended by the Corp of Engineers for static stability. The same may
also be said for the Lower Dam, only the random search analysis of the downstream face
indicates that the factor of safety drops slightly below the recommended 1.5 to 1.35.

5. Under steady seepage and sudden drawdown conditions, lower than suggested factors of
safety are calculated for shallow failure surfaces that would not jeopardize the safety of the
dam. This is judged to be a reflection of steep embankment slopes and weak materials in
the face of the dam slopes.

6. Under earthquake loading conditions, factors of safety of much less than 1 were calculated
for the downstream slopes of both dams. This means that failure with breaching is highly

possible under a future strong earthquake.

7. Under earthquake loading conditions, the upstream slopes of both dams have factors of
safety of greater than 1 against deep failures and breaching of the dam. It drops below 1
for shallow failure surfaces of the larger Upper Dam meaning slumping of the upstream

face may occur during a future strong earthquake.

As indicated above, low factors of safety were calculated for shallow sliding or ravelling of
the steep up and downstream slopes under many loading conditions. The failure surfaces in these
instances are not, however, deep enough to breach' the dam and pose a safety hazard to
downstream inhabitants. To evaluate safety conditions for each slope, the minimum factors of
safety were calculated for arcs or failure surfaces that were deeper and would encompass, as a
minimum, the entire crest of the slope or likely breaching and water release.

For the Upper Dam, the results in Table 4 generally indicate that the Corps recommended
minimum factors of safety (1.5 for steady seepage, 1.2 for sudden drawdown and 1.0 for
earthquake) are nearly met for all loading conditions except the downstream slope under earthquake
loading. Factors of safety of ().44 for shallow sliding and 0.73 for actual breaching suggest that
the Upper Dam is vulnerable to complete downslope failure during a strong earthquake. This
failure would be induced by liquefaction and strength loss of the loose foundation soils both at the
toe and below the dam. In order to improve this stability condition to acceptable minimum
standards some form of buttress needs to be installed at and below the toe of the Upper Dam.
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In several instances, factors of safety in Table 4 for the Upper Dam dropped slightly below
the recommended 1.2 value under sudden drawdown conditions. This is attributed to the steep
upstream slopes, the lack of consideration of riprap on the face, and the severity of the loading
assumed. Full drawdown from maximum normal pool to the bottom of the reservoir is probably
an excessive loading condition for this dam because short of comf)lete failure of the dam, the
maximum feasible drawdown is from the normal pool to the outlet pipe. Assuming no recharge
from the creeks and slope runoff, it would take the two drawdown pipes (8 and 10” in diameter)
several weeks or more running full to create this much drawdown. In this time period, face
drainage would in reality have time to occur where a higher factor of safety than calculated
probably exists.

Similar findings were also reached for the Lower Dam, although it should be understood
that the database for the study is much weaker than at the Upper Dam. Therefore the analysis and
conclusions had to be derived based on limited information and extrapolations, particularly in the
upstream area. The factthat these résults produced similar factors of safety as the Upper Dam give
some confidence that additional studies would likely produce overall results not too different than
reached herein. In summary, they show low factors of safety of 0.4 to (.5 for the downstream
face under earthquake loading. These results too are a reflection of the liquefaction of the
foundation soils. The smaller difference in the shallow and deep seated results and the lower
results reflect a much smaller crest width and a likely more rapid slope deterioration and breaching
than would take place at the Upper Dam. This also implies that the Lower Dam would likely fail
first, followed by the Upper Dam.

When compared with the Corps suggested factors of safety, factors of safety for the Lower
Dam under steady seepage and sudden drawdown fall close to or below this criteria. This is in part
attributed to a weak database for the lower dam and likely a marginal design. A toe buttress would
also need to be installed to raise the static stability and at the same time provide the much needed
additional dynamic stability. |

6.0 CONCLUSIONS AND RECOMMENDATIONS

Our slope stability studies reveal that the Upper and Lower Dams both have marginal but
adequate stability under static load conditions but poor overall stability under earthquake loading
conditions. From the assumptions and analyses presented, the low factors of safety of about 0.4

to 0.8 suggest that both dams could fail under a future strong earthquake. We therefore conclude
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that remedial treatment of both dams is appropriate to protect any residents that may lie in the
inundation zone during a breaching and to assure a continuous supply of water to the City.
Without knowledge of all the alternatives possible for serving the long term water supply needs for
Wrangell, at first review, rock or granular filled toe buttresses appear to be the more attractive

method for improving the stability of the dams.

We understand that dams and most other important structures on U.S. Forest Service lands
must go through an orderly process in order to receive approval to implement such repairs. The
policies and procedures adopted by the Forest Service, referred to as NEPA (National
Environmental Policy Act), requires follow-on studies 1) to justify the feasibility of the repair
compared to other alternatives, 2) to conduct an environmental impact statement for the treatment or
selected alternative and 3) to design and construct the repair with the Forest Service’s review and
approval of all phases of the work. This can be a long term process and can take several years or
more, particularly if funding is critical. We recommend that this work be implemented as soon as
possible as a strong earthquake could potentially create extensive damage and loss of the existing
water supply system.

In addition, short term measures should be implemented on an emergency basis to provide
for the immediate safety of residents that may lie in the inundation zone should one-or both dams
fail. We understand that recent checks of residents in the preliminary inundation zone prepared by
our firm in October 1992 reveal that 12 or 13 homes/trailers may lie in the flood zone. This
according to a 1988 publication by the U.S. Department of Interior, Bureau of Reclamation and
titled Downstream Classification Guidelines would make this a high hazard dam. This has also
been confirmed in recent Forest Service correspondence for these dams. A March 25th ground
survey performed by Forest Service Engineer, John Bowman, resulted in a memo dated March 31,
1993, suggesting that 1) the contours in the October 1992 inundation map were based on aerial
photo interpretation and are likely in considerable error and 2) the probability of homes lying in the
inundation zone is low, but should be checked. We concur with this finding and recommend that
the City immediately obtain the needed survey information and complete an accurate new
inundation map for failure of both dams. The time from breach to flooding of the developed area
should also be addressed. If homes or habited trailers lie in the new inundation, a plan should be
immediately implemented to protect these residents. This may include temporary evacuation,
moving of trailers and/or installation of an early warning system, which could be made a part of the
Emergency Action Plan, which we understand is in draft form. If homes fall in this zone, one
alternative may include constructing a small berm or dike above the homes or in the channel area to

divert the water back to the main channel and/or around the hormes. This construction work could
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be implemented quickly without a complete design as it would likely fall on State of Alaska land
where the NEPA process can be avoided. With the safety of the residents assured by the above
short term measures, the focus would be directed more toward completing the NEPA Process and

implementing the chosen alternative for providing water to the City on a long term basis.
7.0 MISCELLANEOUS C IDERATI

We understand that plans initially included breaching the center of the Upper Dam to install
a new water supply pipe through its center and downslope to the treatment plant. Our studies
revealed that most of the material, except for the upper 5 to 10 feet, will be wet of it’s optimum
moisture content for suitable compaction and marginally, if at all, reusable as backfill in the
excavation. Our stability studies also reveal that the factor of safety of the upstream face is low for
slumping under sudden drawdown conditions. Therefore if the reservoir is drained to install the
pipe, the drawdown should be conducted slowly such that slope face drainage can occur and truly
rapid drawdown conditions do not occur.

As a result of the above explorations and studies, nine observation wells have been
installed, six in the Upper Dam and three in the Lower Dam. These instruments provide a data
source for monitoring the short and long term performance of the dams. Our stability studies have
relied heavily on readings taken roughly 70 days after the wells were installed and not necessarily
maximum levels that could occur with seasonal melting, extended rainfalls, or unusual conditions.
To confirm that the above readings are a reasonable representation of actual conditions and not
subject to large fluctuations, we recommend that until a repair is implemented, all observation wells
should be read at least twice monthly and compared with past readings. If the levels fluctuate less
than 2 feet from previous readings, no action is considered necessary and the data should be
entered as a permanent record under the operations and maintenance plan. Separate extra readings
should also be taken following unusual events such as an earthquake or following periods of
extended rainfall or rapid snow melt. If large rises in the water level are noted (greater than 2 feet)
particularly from observation wells on the dam crests, the data should be reviewed by an

experienced engineer to assess its impact on overall stability.

A crude weir was installed in October, 1992, without Forest Service approval of the plans.
Now that it is in place, it should also be monitored as a part of the long term O&M Plan. The
frequency of readings required by the Forest Service has been specified as daily in previous
correspondence, largely because of the dam’s current high hazard rating. After the above short
term measures are implemented, the long term measures should provide for a better devise for
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monitoring future total toe seepage, if a buttress repair option is selected as the preferred long term
alternative to provide for the existing dams and water storage for the City of Wrangell.
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TABLE 1
WATER LEVEL MEASUREMENTS

!

B-2 2/5/93 20 25.4 26.9 (335.8)

B-3 2/8/93 3 -0.33 2.3 (334)

B-4 2/9/93 31 28.2 28.3 (333)

B-5 2/11/93 23 20.4 20.0 (342.8)

B-6 2/14/93 5 none 20.1 (341.6)

B-7 2/16/93 8 15.2 13.5 (284.6)

B-8 2/17/93 none none 20.5 (277.1)

B-9 2/18/93 18 15.5 12.0 (275.9)
- No

B-C 18 piezometers

B-D YA installed

B-E 7.5 in

B-G none probes

5/20/93




UPPER DAM PARAMETERS

Embankment
Outer Shell
Crib
Sitt Cap

Foundation
(N>10 to 25)**

Foundation
(Ng10)™

Firm Base
Foundation
(N>25)

Wet Unit *
Wt., pcf

135
119"

110
114

114

TABLE 2
PARAMETERS FOR STABILITY STUDIES #*###

Rapid Drawdown

¢,deg. ¢, pcf
39 0
31 0
29 0
30 0
30 0

Lower Failure Boundary

LOWER DAM PARAMETERS

Embankment
Downstream
Upper Upstream
Lower Upstream
Crib

Foundation
(N>10)

Foundation
(N <10)*

Firm Base
Foundation

Wet Unit *
Wt., pcf

135
125
125

119

114

114

135

Rapid Drawdown

¢,deg. ¢, pcf
37 0
33 0
30 0
31 0
30 0
30 0
39 0

Steady Seepage
¢, deg. ¢, pcf
30 0
31 0
20 0
30 0
30 0
Steady Seepage
¢,deg. ¢, pef
37 0
33 0
30 0
31 0
30 0
30 0
39 0

Earthquake
¢,deg. ¢, pef
30 0
31 0
29 0
30 0
0 200"

Ea&hquake
¢,deg. ¢, pcf
37 0
33 0
30 0
31 0
30 0
0 200
30 0

Page 1 of 2



' Extrapolated from triaxial results in Appendix B with adjustments, as appropriate. Crib weight
assumes 25% of mass is wood with average unit weight of 70 pcf.

** N values corrected for overburden and fines effects per Seed and Harder, 1990 for evaluating
undrained residual strengths plus reduced 20% more for use of large (2.5” 0.D.) sampler over normal
(2" 0.D.) sampler.

*** Undrained Residual strength taken from empirical data in Seed and Harder 1990.
**** Most of strength values above based on penetration resistance values and undrained (total)

strengths rather than triaxial results and procedures suggested in Table 3. This modification in use
of strength parameters is on the conservative side (see Appendix B for discussion).
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TABLE 3
FACTORS OF SAFETY (©
RPS OF ENGINEER CRITERIA

Loading Factor Shear
Case  Condition of Safety  Strength(@ Remarks
I Sudden drawdown from 1,2 (3) Minimum Within the drawdown
spillway crest or top of composite of R &  zone, submerged unit
minimum drawdown S shear strengths ~ weights of materials are
elevation used for computing
forces resisting sliding, ;
and saturated unit weights !
are used for computing
forces contributing to
sliding
I Partial pool assumed 1.5 R+S forR < § Composite intermediate
horizontal steady 2 envelope of R and S .
seepage saturation shear strength ?
[I1 Steady seepage from 1.5 Same as Case 11
spillway crest or top of
gates with Kj/K, =9
assumed “4)
IV Earthquake )Cases Il and 1.0 (5) , Use .10 for Seismic
I with seismic loading) Coefficients in Zone 3
Notes
(D Not applicable to embankments on clay shale foundation. Experience has indicated special
problems in determination of design shear strengths of clay shale foundations and
acceptable safety factors should be compatible with the confidence level in shear strength
assumptions.
(2) Other strength assumptions may be used if in common usage in the engineering profession.
3 The safety factor should not be less than 1.5 when drawdown rate and pore water pressure
developed from flow nets are used in stability analyses.
4) Ki/Ky is the ratio of horizontal to vertical permeability. A minimum of 9 is suggested for
use in compacted embankments and alluvial sediments.
(5)  Use shear strength for case analyzed without earthquake. It is not necessary to analyze

sudden drawdown for earthquake loading. Shear strength tests are classified according to
the controlled damage conditions maintained during the test. ‘R’ tests are those in which
specimen drainage is allowed during consolidation according (or swelling) under initial
stress conditions, but specimen drainage during initial stress application and shearing is at a
slow rate so that complete specimen drainage is permitted during the complete test.

Criteria taken from U.S. Army Corps of Engineers (1979)



TABLE 4

SUMMARY OF STABILITY ANALYSES

UPPER DAM
1 Downstream |Steady seepage. .16 Circular arc Shallow failure (no breach)
1 Downstream |Steady seepage 1.72 Circular arc Deep failure/breach
1 Downstream |Steady seepage 1.56 Random Surface |Deep failure/breach
1 Downstream |Earthquake 0.44 Random Surface |Shallow failure
1 Downstream |Earthquake 0.73 Random Surface |Deep failure/breach
1 Downstream |Earthquake 0.78 Circular arc Shallow failure
1 Upstream  {Steady seepage 1.44 Circular arc Shallow failure
1 Upstream  |Steady seepage 1.79 Circular arc {Deep failure/breach
1 Upstream  |Steady seepage 1.54 Random Surface |Shallow failure
1 Upstream  |Earthquake 1.11 Circular arc Shallow failure -
1 Upstream  [Earthquake 0.90 Random Surface |Shallow failure
1 Upstream  |Earthquake 1.36 Circular arc Deep failure/breach
1 Upstream  |Earthquake 1.18 Random Surface [Deep failure/breach
1 Upstream  [Sudden Drawdown 0.85 Circular arc Shallow failure
1 Upstream  |Sudden Drawdown | 1.22 Random Surface |Deep failure/breach
2 Downstream [Steady Seepage 2.06 Circular arc Deep failure/breach
2 Downstream |Steady Seepage 1.79 Random Surface [Deep failure/breach
2 Upstream  [Steady Seepage 2.50 Circular arc Deep failure/breach
2 Upstream  |Steady Seepage 2.18 Random Surface |Deep failure/breach
2 Upstream  |Sudden Drawdown 1.32 Circular arc Deep failure/breach
2 Upstream  {Sudden Drawdown 1.1 Random Surface |Deep failure/breach
3 Downstream [Steady Seepage 2.78 Circular arc Deep failure/breach
3 Downstream |Steady Seepage 2.49 Random Surface |Deep failure/breach
3 Downstream |Steady Seepage 2.21 Circular arc Deep failure/breach
3 Downstream |Steady Seepage 2.08 Random Surface |Deep failure/breach
3 Upstream  [Sudden Drawdown 1.22 Circular arc Deep failure/breach
3 Upstream  [Sudden Drawdown 1.15 Random Surface |Deep failure/breach
LOWER DAM
4 Downstream {Steady Seepage 1.51 Circular arc Deep failure/breach
4 Downstream [Steady Seepage 1.35 Random Surface |Deep failure/breach
4 Downstream {Earthquake 0.52 Circular arc Deep failure/breach
4 Downstream |Earthquake 0.43 Random Surface |Deep failure/breach
4 Downstream |Earthquake 0.52 Circular arc Shallow failure
4 Upstream  |Steady Seepage 2.16 Circulararc  [Deep failure/breach
4 Upstream  |Steady Seepage 2.16 Random Surface |Deep failure/breach
4 Upstream  |Earthquake 1.33 Circular arc Deep failure/breach
4 Upstream  [Earthquake 1.17 Random Surface |Deep failure/breach
4 Upstream  |Sudden Drawdown 1.16 Circular arc Deep failure/breach
4 Upstream  [Sudden Drawdown 1.13 Random Surface {Deep failure/breach
4 Upstream  [Sudden Drawdown 0.76 Random Surface |Shallow failure

5/20/93
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B-4

N . B-2 B-6 .
T -+ ﬂ Q-L//
B-C .
= '
Scale N ,____-J——'——-—"“"'" ‘”
Horizontal 1"=30" - CRIBBING Z
Vertical 1"=30" | ‘ L3 1
) a0 7|
?
4 T
370 — Sta 0+00 '%Sta 14} ? 345 Sta 2+00 Sta3+00 Sta 3+20
Ap > | = # |
Drox. ,
actual elevation I o Br2 - | a6 | 3+33.13
Proposed | Dam Crest 363 ft. B-1j - T I
Elevation T —- T~ 362
360 — TOP OF OLD DAM
358" o ————=3575 B-D
\—356
—352
R 349
Ll Old Dam Logs encountered
L Diverges TOP OF CRIB PER DESIGN PLAN 4/66 B-C in Boring Approx. =~ 346
Z - . R —
= - p— *-345 end of
Z 344 Old Dam
o A GROUND SURFAGE OF OL[] CRIB DAM Z 427
';:' 340— A
< 338.5
L B-
2 N o BT N 427
-A T7334.5 - -1334.5
'§ 333 5:: SEOUTI 00 __Z 4127
Il o OUTLET
330 — N .
N sers T — 328 Approximate
Bedrock
. 323.5
- 320 —
- —+- 318
Scale - 317 ~—1316.5
Horizontal 1"=30" Ny
Vertical 1"=10" 311 4 “""312-5\ Crest Area
310 — =310 L3190 Rock Surface
308.5 ”
—1.304.5
38(1)25\J Upper Wrangell Dam
300 — ' Wrangell, Alaska
Notes Toe Area ? L )
See Fig. 2 for location of Section Rock Surface ) . Longltudlnal Section
May, 1993 A-494
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ELEVATION IN FEET

Sta

Sta Sta Sta m
0+00 1+00 B-7 2+00 3+00 Fﬁ
300 — + : : il —300 ¢
>
SPILLWAY TIMBER | 1\vgeR cope  |_B9 | /) =
J ///.$~/// CORE OLD CRIB/_/_/‘ ? /4 g
OLD CRIB ~~ NN | STEEL _OAM ?/ =
270 — DAM IS/ 3 ———— . P
BEDROCK Loose to med. dense, SAND \\\, r—q
?
2
L39 —
?
240 — Dense, sandy GRAVEL — 240
NOTE SCALE 1"=30
B 1 Snctionbased-heavily—»on existing-information
2. See Fig. 3 for location of section
Lower Wrangell Dam
Wrangell, Alaska
Longitudinal Section
May, 1993 A-494
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360 —
350 —
340 —
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320 8-;
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/ L
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316—
SILT -
300 —

2/93 Survey
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ORIGINAL CR

-

—
-
-
—

No Liquefaction

NOTE

1. See Fig. 2 for location of section

2. Liquefaction boundary assumed for
dynamic stability studies only. In
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to residual value of c=200psf

NG |

B-G

B-2
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m
— 350 I'<T1
68 e 3
AR 2
/ = :'\:\/'r o)
ON=T S S
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i :4/2'7 silty, sandy GRAVEL 1| Backin T
14 | | Beside , ,
| g After SSUMED 5o L | Cribbing Liquefaction
| :Ping CRIB T lo=31° QRIGINALCRIBBING. _ _ _ % _ — 330
“N= - ¢=0 /" 4 -30° Loose to medium dense _ .
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c=0 i
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-
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N Average Penetration Resistance For Area, blows/ft.
| Angle of Internal Friction
? ° tema — 300
c Cohesion Intercept
SH Undidsturbed Sample Locations
SCALE 1"=10'
Y  Water Level Measurements
4/27 Date of Water Level Reading Upper Wrangell Dam
Core 500 Core Pressure During Sampling, psi Wrangell, Alaska
g_T_ Sample Penetration Resistance, blows/ft. Section 1
May, 1993 A-434
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— 360
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c=0 7
P
7~
-
~
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ELEVATION IN FEET

360 —

350 —

- - 3 ORIGINAL GROUND SURFACE [
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340 —
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Critical Failure Surface
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APPENDIX A
FIELD EXPLORATION PROCEDURES AND RESULTS

A-1 Drilling

Our subsurface explorations at the two dams consisted of drilling nine borings and five
probes at the locations shown on Figures 2 and 3. This drilling work was accomplished between
the 5th and 18th of February, 1993. The borings, designated B-1 through B-9, were advanced
with sampling to depth ranging between 27 and 77 feet. The probes, designated B-A, C, D, E and
G were essentially borings with limited sampling. These probes were drilled in the toe area of the
Upper Dam to define the depth to firm materials with the initial though_t that rock varied
considerably across the valley section. All holes were drilled with a track mounted Mobile B-47
drilling rig using hollow-stem continuous flight (3-3/8 inch ID by 6 inch OD) augers to advance the
borings. In some instances, refusal of the auger was encountered or all 40 feet of the available
auger was used requiring alternate drilling methods to continue advance of the deeper borings.
When additional advance of the boring was necessary, rotary wash drilling techniques were
supplemented with a tricone bit,

The drilling work was subcontracted to Wink Brothers Drilling of Juneau, Alaska. Their
operations were continuously observed by an experienced engineer from Shannon & Wilson, Inc,
The logs of these borings are presented as a part of thi§ appendix, Figures A-1 through A-14.

The locations of all borings are shown on Figures 2 and 3 of the main text. These locations
were determined by City Engineer, Jim Pun g, after the borings were completed. Also referenced
with these locations are the existing piezometers, one at each of the nine borings and four profiles
of the slopes generally through most of the boreholes on the slope. These profiles shown on
Figures 6 through 9 represent 1993 slope surface conditions. To obtain upslope measurements,
holes were cut in the ice and soundings made. In all instances, these water depth soundings
detected generally firm materials within a few inches of the surface (i.e. sedimentation was likely
minimal),

A-2 Sampling

Sampling of the embankment and foundation soils in all borings was accomplished at
regular depth intervals, typically every 2.5 to 5 feet. Samples for classification purposes were
obtained by driving with a hammer a split spoon sampler into the undisturbed soil at the bottom of



the advancing hole using modified penetration sampling procedures. In this test, a 140-pound
hammer was used to drive the 2.5-inch O.D. samples, 1_8 or 24-inches into the undisturbed soil.
The number of blows required to drive the samplers 12-inches after achieving the first 6-inch
penetration is recorded on the logs. These values provide a means for estimating consistency
(strength) for cohesive soils and density or compactness for granular soils. The soil recovered in
the sampler was placed in airtight containers and brought to our laboratory for detailed examination
and classifications testing, as necessary.

Two relatively undisturbed samples were obtained with 2.5-inch diameter thin-wall steel
tubes, which were pushed into the soil at the bottom of the advancing boring by means of the
hydraulic ram on the drill rig. The tube samples were sealed at the ends with plastic caps and
delivered to our laboratory where the samples were extruded, classified and tested. The location
and depth of these samples are shown on the boring logs.

A-3 Piezometers

Piezometers were installed in all nine borings following their completion to measure depth
to groundwater or piezometric pressures within the embankment or foundation materials. Each
piezometer consists of a 1-inch diameter slotted plastic tip connected to 1-inch plastic riser pipe. In
tip areas, the hole was backfilled with dry clean bag sand, while the remainder of the hole to the
ground surface was sealed with native materials and/or an impervious bentonite seal. The length of
each porous tip and the locations of the different sealed zones relative to the tip for each installation
are indicated on the boring logs.

The water level in these piezometers is measured by lowering an electrical water level
reading device into the riser pipe until contact with the water is made. Water level readings from
these piezometers were taken by Shannon & Wilson during the field effort and by City of Wrangell
personnd on April 27, 1993. These data are summarized in Table 1, shown on the respective
boring logs and included on the profiles, Figures 6 through 9.
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I[ 3" O.D. thin-wall sample
I 2.5 0D, split-spoon sample

REC%
RQD% Rock core sample

Grab sample

Iimpervious seal

Water level al indicated
hr number of hours ufter dritling
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Soil Description
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g &z & dg A
—_Loose, brown, sandy, organic SILT; wet — 15 0.0
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1. Groundwaler levels may vary with time, precipitation, infiltration, and other [actors
2. The stralification lines represent approximate soil boundacies. Acual boundary may be transitional,

Log of Boring B-D

Stability Evaluation A-494
=" SHANNON & WILSON, INC. Upper and Lower Dams
— Geotechnical Consultants

Wrangell, Alaska | Fig. A12




Atterberg Limits & Waler Content
Natural Water Content %
Soil Description Plastic Limit F———@——— Liquid Limit

Yy
N - . Penctration Resistance
®OE g s g = A(140-1&». weight /30 in. drop)
. a 5 Bl F indic 8
Surface Elevation: 333.0 fect g 2 5 E‘ 34 - owsifoot ot indicated depth
1]
8 8z 4 & z
Loose to medium dense, gray, silty, sundy GRAVEL; moist to wet
Cobbles on surface
X ; 8.0 T e
Loose, gray, slighily gravelly, silty SAND 10 sandy SILT; wet 1 While Dﬂmf& 0
Wood from 9'10.9.5 and 19.2' 10 19.5'
Cobbles to boulders at 17" and 23'
Iz
30.0f
9.5 Ts 400f:A.’ZI::f....f:..if..,ff..I
Bottom of Boring I X
Boring Completed 2-14-93 Lot
so0losiiii
70.0
80.0
Legend 0 1.0 2.0 3.0
Shear Strength tsf
I[ 3" O.D. thin-wall sample Impervious seal
" " . . Mecthod of Measurement
I 25" O.D. spli-spoon sample Water level at indicated O Unconfined Compression
ontinuous sample hr number of hours after drilling A Unconsolidated - Undrained
RECHKA 1 , . triaxial compression
—‘ig Rock core sample Piczometer 1i P
RQP% P ? O Torvane
l Grab sample 0O Pocket Penetrometer

I. Groundwater levels may vary with time, precipitation, infiltration, and other lactors
2. 'The stratification lines represent approximate soil boundaries, Actual boundary may be transitional,

Log of Boring B-E

Stability Evaluation A-494

mme | | SHANNON & WILSON, INC. Upper and Lower Dams
—— Geotechnical Consultants Wrangell Alaska Fig A13
5 -




Atterberg Limlts & Water Content

. Natural Water Content %
Soil Description Plastic Limit Liquid Limit
Yt
P e & s Penetrafion Reslstance
&g e - & (140-1b. weight /30 in. drop)
. — = 3, dicate

Surface Elevation: 362.7 fect g 2% g g s § ABlowsffoot or indicud dopih
QA A & OB 0 20 40 60
Loose to medium dense, gray, silty, sandy GRAVEL to gravelly SANI 001w R S
Cobbles and boulders at 12 and 14' I IR S AN
Wood/logs encountered at 15' 1o 16.5', 20" 10 20.8' and 23.5' 10 24' NI B S
Ry B pusat
I I A A R
200
24.0 D R N
Bottom of Boring R N B
Boring Completed 2-15-93 SRR FE Rt EE R R
Depth 1o groundwater not noted during drilling GO0 | arreemreenasessacosseebesnoreseessmeremmesassbestesmstosstares
PP R TR REATRERRR
500
700
Cnt] I DA SN
0 1.0 2.0 3.0

Legend
]I 3" O.D. thin-wall sample
I 2.5" 0.D, split-spoon sample

sontinuous sample

RECY, . .
R 5@@ Rock core sample

Grab sample

Impervious scal

Waler level at indicated
hr number of hours after drilling

Piczometer tip

1. Groundwater levels may vary with time, precipitation, inliltration, and other factors
2. 'The stratification lines represent approximate soil boundaries, Actual boundary may be transitional,

Shear Strength tsf

Method of Measurement
O Unconfined Compression

A Unconsolidated - Undrained
triaxial compression

O Torvane
[ Pocket Penetrometer

Log of Boring B-G

=lI
— Geotechnical Consultants

SHANNON & WILSON, INC.

Stability Evaluation
Upper and Lower Dams
Wrangell, Alaska

A-494

Fig. A14

-



APPENDIX B
LABORATORY TEST PROCEDURES AND RESULTS

Laboratory tests were performed on selected soil samples from the borings and probes to
determine those physical characteristics and engineering propérties pertinent to the stability studies.
The following sections discuss each of the tests performed for the various properties required.

B-1 Classification Tests

Many select samples were carefully examined and classified in the laboratory and their
descriptions were checked against those in the field. From this information and from observed
changes in drilling characteristics, the detailed boring logs were prepared which show a generalized
description of each material encountered. Following the visual classification of each sample, a
portion of the material was then weighed and oven-dried to determine its natural water content.
Water contents are presented graphically on the boring logs, Figures A-1 through 14. They are
also summarized in Table B-1. Samples that appear to possess organics were tested further as a
follow-on effort to water contents measurements. The dry specimen from the water contents were
burned where the organics were turned to ash. From this change in weight, the organic content
was calculated. These results are also summarized in Table B-1.

Grain-size analyses were conducted on 28 selected samples. The soil specimen were tested
to obtain estimates of the percent fines or permeability and the general gradation characteristics of
the coarser soils in the various zones of the two dams and foundations. These tests were
performed in accordance with the test method described in Laboratory Soils Testing, Department of
the Army, Pages V-1 through V-25 (EM 1110-2-1906). The results of these tests are presented in
Figures B-1 through B-8. The Figure B-8 grain size curves are bulk samples of the embankments
for each dam and represent support results for the follow-on compaction curves in Figure B-9.

Compaction tests were conducted on two granular bulk samples of the embankment
materials for each dam. These tests were conducted to determine the optimum moisture content of
the embankment soils for comparison with the natural moisture contents of the in situ soils. If the
Upper Dam is breached to install a new pipe, the suitability of excavated materials for re-use can be
evaluated from these results. Both of these tests were conducted using procedures described in
AASHTO T99-70 using the three point method. The results of these tests are presented in Figure
B-9. '



B-2 Strength Tests

Triaxial compression tests were performed on recompacted specimen from the embankment
and foundation materials to determine strength characteristics for stability analyses.

Consolidated Undrained Triaxial Compression Tests

Consolidated undrained triaxial compression tests (R-test) were accomplished on eight
specimens from the various foundation and embankment materials present at the dam sites. For
lack of sufficient material from the sampler and the inability to recover undisturbed samples, testing
had to be limited to recompacted samples prepared from like materials from several samples in a
given boring. Each cylindrical specimen was prepared by tamping the soil at the natural water

content in § layexfs to fill a cylinder of predetermined dimensions. The ends were then squared off

.and the fmal dxmens 5 determined. Next, each specimen was encased in a rubber membrane and
placed in a tndxml chamber. The specimen was saturated with back prcssure and allowed to
consolidate under preselected confining pressures. After consolidation, thé drain valves were
closed and each specimen was slowly loaded to failure whxle pore pressure measurements are

taken. The results of these tests are summarized as Mohr’s Circles in Figures B-10 and.B-11.

Since the crib and foundation materials have similar properties, these specimens were
placed on Figure B-10 for comparison. Similarly, the denser embankment materials are
summarized in Figure B-11. The details of each of these tests are presented in Figures B-12
through 20.

B-2



Table B-1
Moisture and Organic Contents

Boring No.

Sample No.

Natural Water
Content %

Remarks

B-1

B-2

B-3

B-4

B-5

St
S2
S3
S4
S5
S6
87
S9
S9

St
S2
S3
S4
S5
S6
S7
S8

St
S2
s3
S4
S5
S6
S7

St
S2
S3
S4
S5
S6
S7
S8

St
S2
S3
S4
S5
Sé
S7
S9
S9
S10
S11
St12

12.4
11.3
11.6
82
14.9
80.4
22.2
103.8
5.8

16.4
11.4
13

- N W01 —

DN WN TgiwmND

TN un

N @D

_ il BN - ek mmo’]\)mw_a.
NNRARUTUIOA TGINOIWOHOO S TRCL
NPAPODWooOTO®

_— = N N s —
CIN O NN

18.

Sample of Log Crib
Sample of Log Crib

Moss and Wood in sample

Organic Content of 7.6%

Organic Content of 2.3%

Organic Content of 7.3%
Organic Content of 3.7%

Organic Content of 64.2%

A-494 Wrangell Dam
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Table B-1
Moisture and Organic Contents

Boring No. Sample No. {Natural Water Remarks
Content %
B-6 St 12.5
S2 29.4
S3 30.9 Organic content of 1.6%
S4 35.1
S5 15.1
S6 21.8
S7 12.7
B-7 S1 13.2
S2 14.4
S3 19.4
S4 33.2
S5 17.5
S6 26 Wood in Sample
S7 11.7
B-8 St 12.4
S2 13.6
S3 9.8
S4 19.7
B-9 S 20.8
S2 18.5
S3 20.6
S4 167.7 Sample of Log Crib
S5 20.6
S6 17.8
S§7 76.6 Sample of Log Crib
S8 15
B-A S1 55.9 Organic Content of 7.1%
S2+ 22.2 ~ -
B-C St 18.8
S2 20
S3 34.4
54 13.2
S5 23.9
B-D S1 17.4
S2 20.8
B-E St 60.2. Sample contained wood
S2 73.8 Sample contained wood
S3 22.3
B-G S1 143.2 Sample of Log Crib

A-494 Wrangell Dam

Page 2 of 2
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